Dougherty Valley HS Chemistry - AP Bonding Study Materials Quick Checks #1-5

Name:		Period:	Seat#:
Directions: Try these problems. If you CANNOT do them, write so		bout what you need to study	•
S47 – Quick Check #1		Energy	O O O O O distance (nm)
Potential Energy Diagra	ms	(joules)	
Sketch the potential en atoms approach each o	nergy involved as two hydrother.	rogen -200-	
As the two atoms get of because of the	closer, the potential energy	drops -400-	
(attraction/repulsion) b	between the	and the	
The distance when the	potential energy is a mini	mum is called	
the			·
Lewis Structures			
Draw the following <i>Le</i> Be (ground state)	Be (bonding state)	Si (ground state)	Si (bonding state)
De (ground state)	De (contains state)	or (ground state)	or (conting state)
Draw the <i>Lewis Dot D</i>	iagram for Calcium Chlor	ride. This compound is	(covalent/ionic).
Explain how this bond	was formed in terms of th	ne electrons.	
Draw the <i>Lewis Dot D</i>	iagram for BeH ₂ . This co	ompound is(o	covalent/ionic).
Explain how this bond	was formed in terms of th	ne electrons.	

;	State the octet rule:						
· ·	Is the compound BeH ₂ obeying the octet ru	ule?					
<u> S48 – 0</u>	Quick Check #2						
☐ Lev	vis Structures						
]	Draw the Lewis structure for CH ₃ F.		Draw the Lewis stru	acture for SO ₂ .			
☐ For	rmal Charge		101				
;	Determine the formal charge for each ato	m in COCl ₂ :	14 - 6 - 14				
	Draw the Lewis structure for CO ₂ . Then determine the formal charge and ox	idation number	of C in CO ₂ .				
<u> S49 – (</u>	Quick Check #3	4p000		bromine			
Orb	oital Diagrams			Br			
]	Fill in the orbital diagram for bromine.			79.904			

	Write the short form electron configuration for Bromine: [Ar]					
	Bromine can make five bonds in	molecules such as BrF ₅ Draw the L	Lewis dot structure for BrF ₅ .			
	Determine the <i>formal charge</i> for	r each atom in BrF5 molecule.	Br = F =			
	Consider the central bromine ato	m in BrF ₅ :				
	# of bonded atoms =	# of lone pairs =	Steric Number =			
	What is the <i>Electron-Pair Geom</i>	etry of BrF ₅ ?				
	What is the <i>Molecular Geometr</i>	y of BrF ₅ ?				
<u>S50 -</u>	- Quick Check #4					
\Box L	ewis Structures					
	<u> </u>	l sketch the shape of the following n				
1	For extra practice identify formal. N ₂	2. H ₂ O	3. CO ₂			
4	4. NH ₃	5. CH ₄	6. SO ₃			
	7 III	o CH OH	0. 11.0			
/	7. HF	8. CH ₃ OH	9. H ₂ S			
1	10. I ₂	11. CHCl ₃	12. O ₂			

 \square Mixed Problems

S51 - Quick Check #5

Draw the Lewis Structure for BF3. Try to draw it in a way that takes into account the three dimensional shape and bond angles based on VSEPR theory. If applicable, correctly place the symbols δ + and δ - around your drawing to represent any net dipole that may exist.

Based on VSEPR theory, what shape would you assign to the molecule, BF₃?

The B-F bond is classified as _____ (Ionic/Polar-Covalent/Non-Polar Covalent)

The molecule, BF₃, _____ have a net dipole moment. (does/does not)

The molecule, BF₃, is ______ (polar/non-polar)

Explain the reasoning for your answer:

☐ Bond Energy

Balance the following equation and calculate the Energy of Formation (ΔH_f) of NH₃ using the bond energies provided. Write the energy term on the correct side of the equation.

 $N_2 + H_2 \rightarrow NH_3$

This reaction is _____ (endothermic/exothermic).

Table 9.9 • Some Average Single- and Multiple-Bond Energies (kJ/mol)

				•	•		•		•		,
	Н	C	N	О	F	Si	P	S	Cl	Br	I
Н	436	413	391	463	565	318	322	347	432	366	299

Multiple Bonds	N≡N 945